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1. INTRODUCTION

The evolution in time of a magnetic fieldB is determined by an electric fieldE through
the induction equation [4, 8, 12, 14]

∂B
∂t
+∇ × E = 0, (1)

one of Maxwell’s equations. The magnetic field must also satisfy∇ · B = 0. This constraint
expresses the absence of magnetic monopoles, which have never been observed experimen-
tally. Since (1) implies∂t (∇ · B) = 0 this constraint is often treated as an initial condition,
which will be preserved under subsequent evolution.

The induction equation (1) is combined with the equations of gas dynamics to describe the
behaviour of compressible electrically conducting fluids subject to magnetic fields. For non-
relativistic fluids, where Maxwell’s displacement current may be neglected, the combined
system is referred to as the magnetohydrodynamic (MHD) equations. The compressible
ideal (inviscid and perfectly conducting) MHD equations may be written as a hyperbolic
system of conservation laws in the form [7, 9, 11]

∂

∂t


ρ

ρv
B
U

+∇ ·


ρv

ρvv+ (p+ 1
2 B2

)
I− BB

vB− Bv(
U + p+ 1

2 B2
)
v− (v · B)B

 = 0, (2)
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using a standard notation in whichv is the fluid velocity,ρ the density, andp the pressure. The
electric fieldE has been eliminated using the perfectly conducting conditionE+ v× B = 0
appropriate for highly conductive media such as astrophysical plasmas. The symbolI denotes
the 3× 3 identity tensor with componentsδi j . A factor of 1/

√
µ0 has been absorbed into

the definition ofB. The total energy densityU is given by

U = p

γ − 1
+ 1

2
ρu2+ 1

2
B2, (3)

for a perfect gas with ratio of specific heatsγ . The three terms comprise the internal, kinetic,
and magnetic energy, respectively.

In recent years Godunov-type upwind methods have become popular for solving hyper-
bolic systems such as (2), especially when shocks are likely to form [3, 7, 10]. These finite
volume methods often compute upwind fluxes by solving the one-dimensional system for
initial data comprising uniform left and right states separated by a single discontinuity at a
computational cell boundary, i.e., by solving the one-dimensional Riemann problem [3, 7].

2. THE MHD RIEMANN PROBLEM

Unfortunately the one-dimensional MHD equations are degenerate. If the variables in (2)
are functions of one coordinaten only, the evolution equation forBn becomes simply∂t Bn =
0. In a sense, this is consistent with the one-dimensional form of the constraint∇ · B = 0,
which simplifies to∂n Bn = 0. Thus the magnetic fieldBn normal to the discontinuity should
be constant in the initial conditions and will then remain constant.

In a finite volume discretisation,∇ · B = 0 implies that the signed sum of the jumps in
the normal component ofB across a cell’s boundary should vanish. Thus the initial data for
the one-dimensional Riemann problems, if used to compute fluxes in a multidimensional
scheme, will generally contain jumps inBn comparable to the jumps in the tangential
componentsn× B.

One approach is to use the solution of the reduced seven-wave Riemann problem [13],
using some average value forBn on both sides, to update the seven variables other than
Bn, followed by a separate step which updatesBn so as to preserve∇ · B = 0 [2, 16].
An alternative approach, pioneered by Powellet al. [9, 10] (see also [11]), adds terms
proportional to∇ · B to the system (2) to make the one-dimensional Riemann problem non-
degenerate. It is worth emphasising that although Powell’s approach maintains∇ · B ≈ 0
to truncation error in a multidimensional sense, in the one-dimensional Riemann problems
∇ · B is comparable to∇ × B. Numerical experiments comparing various schemes have
been performed recently by T´oth [15].

3. POWELL’S EIGHT-WAVE MODIFICATION

Powellet al. [9, 10] (see also [11]) proposed solving the modified system

∂

∂t
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0
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v · B

 , (4)
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in which source terms proportional to∇ · B have been added to the momentum and induction
and energy equations. This system was constructed by modifying the coefficient matrix in the
linearised Riemann problem to include an eighth wave corresponding to passive advection
of jumps in Bn with the fluid speedvn. This is the only possibility that leaves the system
invariant under the Galilean transformationsx 7→ x+ v0t andv 7→ v+ v0, while B andt
remain unchanged.

Janhunen [5] found that the solution of the Riemann problem for Powell’s system (4) for
left and right states with positive fluid pressures may contain an unphysical intermediate
state with negative fluid pressure. This so-called lack of positivity [3] is a particular problem
for astrophysical applications, where the contribution to the total energy from the fluid
pressure is often small compared with the magnetic and possibly the kinetic energy. Thus
computing the fluid pressurep from the conserved quantitiesρ,ρv, B, andU often involves
the difference between two nearly equal terms. Janhunen [5] found that positivity, as well
as local energy and momentum conservation, could be regained by discarding the source
terms in the energy and momentum equations, so that (4) becomes

∂
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

0
0
v
0

 . (5)

4. DERIVATION FROM RELATIVISTIC ENERGY-MOMENTUM CONSERVATION

We now give a systematic derivation of the system (5). In special relativity, energy and
momentum conservation are expressed compactly as a single conservation law for a four-
dimensional stress-energy tensor [6, 8, 12]

∂β
(
Tαβ

FL + Tαβ
EM

) = 0, (6)

whereTαβ
FL andTαβ

EM are the separate fluid and electromagnetic contributions to the stress–
energy tensor. Our notation follows Misneret al. [8] except we retain explicit factors ofc,
the speed of light. Greek indices range over 0, 1, 2, 3, with 0 being the time-like component,
and Latin indices range over the space-like components 1, 2, 3. A coordinate vector is thus
xα = (ct, x), while the metric isG= diag(−1, 1, 1, 1).

The four-dimensional stress–energy tensor for a relativistic ideal fluid is [6, 8, 12]

Tαβ
FL = (p+ e)uαuβ + pgαβ, (7)

where p is the pressure ande the relativistic energy density. In the non-relativistic limit,
|v| ¿ c, the various components ofTαβ

FL become [6]

T00
FL = ρc2+ ε + 1

2
ρv2, T0i

FL = Ti 0
FL = ρcv+ v

c

(
p+ ε + 1

2
ρv2

)
, Ti j

FL = pδi j + ρvi v j ,

(8)

where the non-relativistic internal energy isε = p
γ−1 for a perfect gas. Unlike Misneret al.

[8], we useρ for the rest mass density, rather than the combined mass–energy density, in
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agreement with standard fluid dynamical usage. The electromagnetic stress–energy tensor
has components [4, 8, 12]

T00
EM =

1

2

(
B2+ 1

c2
E2

)
, T0i

EM = Ti 0
EM =

1

c
(E× B)i , Ti j

FL = Mi j . (9)

We recogniseT00
EM as the electromagnetic energy density, andT0i

EM = Ti 0
EM as the Poynting

flux. The remaining componentsTi j
EM comprise the three-dimensional Maxwell stressM,

Ti j
EM = Mi j = 1

2

(
B2+ 1

c2
E2

)
δi j −

(
Bi Bj + 1

c2
Ei Ej

)
. (10)

The components of (9) are unchanged by “duality rotations” [4, 5, 8] of the electromagnetic
field, under whichE andB transform to

E′ = E cosα + cB sinα, B′ = B cosα − 1

c
E sinα, (11)

whereα is a real parameter, not to be confused with a component index. Rindler [12]
notes that it is possible to construct a relativistic field theory in which the electric and
magnetic fields have completely interchangeable status, so∇ · E = ρe and∇ · B = ρm 6= 0,
and which contains conventional electromagnetism (∇ · B = 0) as a special case. This
theory, while permitting both electric and magnetic charges, requires no changes to the
stress–energy tensor in (9), which is already symmetric betweenE andB.

The α = 0 component of (6) corresponds to energy conservation, andα = 1, 2, 3 to
the three components of momentum conservation. The four-dimensional derivative is
∂β = ∂/∂xβ = ( 1

c∂t ,∇). From the α = 0 component of (6) we obtain the energy
equation

1

c

∂

∂t
(ρc2+U )+∇ ·

(
ρcv+ v

c

(
1

2
ρv2+ p+ ε

)
+ 1

c
E× B

)
= 0. (12)

The leading order terms, which reflect the contribution of the rest mass to the relativistic
energy, exactly cancel by virtue of the continuity equation∂tρ +∇ · (ρv) = 0, leaving the
non-relativistic energy equation [6]. The Poynting flux simplifies usingE+ v× B = 0 to

1

c
E× B = 1

c
(−v× B)× B = 1

c
(vB2− v · BB), (13)

as in (5). From theα = 1, 2, 3 components of (6) we obtain the momentum equation

1

c

∂

∂t

(
ρcvi + vi

c2

(
p+ ε + 1

2
ρv2

)
+ 1

c
(E× B)i

)
+ ∂

∂xj
(pδi j + ρvi v j + Mi j ) = 0.

(14)
The fluid energy flux and the electromagnetic Poynting flux contribute to the momentum
density in (14), as well as to the energy flux in (12). This is due to the symmetry of the stress–
energy tensors, or that relativity associates momentum with the motion of energy as well
as matter [4, 8, 12]. However, these terms in (14) areO(v2/c2) smaller than the expected
terms, those which give the non-relativistic momentum equation as it appears in (2) and (5).
The electric field’s contributions to the energy and Maxwell stress may also be neglected,
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since they areO(v2/c2) smaller than the magnetic contributions in the non-relativistic limit.
For instance, the three-dimensional Maxwell stress simplifies to just

Mi j = 1

2
B2δi j − Bi Bj , (15)

and (12) and (14) take the forms in which they appear in (2) and (5). This derivation requires
no assumptions about the presence or absence of magnetic monopoles.

More generally, the electromagnetic part of (14) already contains the terms that Janhunen
added to the usual Lorentz force to make it invariant under duality rotations (11), by which
he obtained the “generalised Lorentz force” [5],

f = −∇ ·M− ∂

∂t

(
1

c2
E× B

)
= 1

c2
(∇ · E)E− 1

c2
Jm× E+ Je× B+ (∇ · B)B, (16)

in combination with the two “generalised Maxwell equations” [4, 5, 14]

−Jm = ∇ × E+ ∂B
∂t
, Je = ∇ × B− 1

c2

∂E
∂t
. (17)

The Lorentz forcef felt by a fluid is not simply−∇ ·M because the electromagnetic field
itself contains momentum, the Poynting flux. Some of the stress exerted by the electro-
magnetic field goes into changing the momentum of the field itself, as expressed by the
∂t (

1
c2 E× B) term in (16), instead of changing the momentum of the fluid. This difference

becomes negligible in the non-relativistic limit.
The (∇ · B)B term in (16) is usually discarded, on the assumption that∇ · B = 0 in

reality, leading to the usual expressionJe× B for the Lorentz force exerted by a magnetic
field on an electrically conducting fluid. However, the consistent expression for the Lorentz
force in the presence of magnetic monopoles remainsf as in (16), which no longer coincides
with Je× B. This is why Powell’s system (4) fails to conserve momentum and energy.

5. MODIFIED INDUCTION EQUATION

In relativistic electromagnetic theory, the two homogeneous Maxwell equations,∇ · B =
0 and∂tB+∇ × E = 0, are components of the single equation [8, 12]

∂αGαβ = 0, (18)

where the four-dimensional tensorGαβ has components

Gαβ =


0 −cBx −cBy −cBz

cBx 0 Ez −Ey

cBy −Ez 0 Ex

cBz Ey −Ex 0

 , (19)

in terms of the three-dimensional electric and magnetic fields in a given frame.
In the presence of magnetic monopoles (18) generalises to

∂αGαβ = ρβm, (20)
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whereρβm must be a four-vector in order to make the equation invariant under Lorentz
transformations, i.e., transformations of the form(ct, x) 7→ (ct′, x′), wherex′ = 0(x+
v0t) andt ′ = 0(t + x · v0/c2), and similarly for other four-dimensional objects. Note that
0 = (1− v2

0/c
2)−1/2 = 1+O(v2

0/c
2), and t ′ = t +O(v0x/c2), so Lorentz transforma-

tions reduce to Galilean transformations in the non-relativistic limit. By analogy with the
relativistic equation for baryon conservation (i.e., continuity of mass) [6], the simplest
choice isρβm = (ρm/c)uβ , whereuβ = 0(c, v) is the single fluid four-velocity. The scalar
ρm is the density of monopoles in the local fluid rest frame, whereuβ = (c, 0). In a general
frame, Lorentz-invariance forcesρ i

m to be nonzero. The components of (20) then become

∇ · B = 0ρm,
∂B
∂t
+∇ × E = −0ρmv, (21)

the latter of which reduces to the Galilean-invariant, modified induction equation of (4) and
(5) in the perfectly conducting and non-relativistic (0→ 1) limits.

6. CONCLUSION

Relativistic energy–momentum conservation, Eqs. (6), (7), and (9), is already invariant
under duality rotations and requires no changes to accommodate the possibility of magnetic
monopoles (∇ · B 6= 0). In the non-relativistic limit we derive equations which coincide
with those previously proposed by Janhunen [5] and differ from those proposed by Powell
[9, 10] in that they retain local conservation of energy and momentum in the presence
of monopoles. Our derivation also leads directly to a conservative form of the equations,
whereas Janhunen’s [5] proceeded via primitive variables.

The possibility of magnetic monopoles,∇ · B = ρm 6= 0, requires a source term propor-
tional to∇ · B in the induction equation to preserve Lorentz invariance of the combined
system. If magnetic monopoles are treated as particles, the simplest approach, Lorentz in-
variance leads to the modified induction equation first proposed by Powell [9] and adopted
unchanged by Janhunen [5].

The Lorentz force consistent with momentum conservation,Je× B+ B∇ · B, is not per-
pendicular toB unless∇ · B = 0. This leads to the phenomenon observed by Brackbill
and Barnes [1] in which a supposed steady state is “polluted” by magnetic monopoles ac-
celerating along magnetic field lines. In fact, T´oth [15] recently showed that the Lorentz
force computed by a momentum conserving scheme cannot be perpendicular toB, even if
∇ · B = 0 in some discrete sense. T´oth also found that Powell’s formulation computed in-
correct propagation speeds for strong shocks which were inclined to the computational grid.
This is typical of non-conservative formulations [7, 15], and it remains to be seen whether
errors in the shock speed are alleviated by restoring just momentum and energy conserva-
tion. A modification of these equations, retaining the exact fluid stress from (7) instead of
the approximation in (8), may also prove useful for relativistic magnetohydrodynamics.
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