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1. INTRODUCTION

The evolution in time of a magnetic fieBlis determined by an electric fieke through
the induction equation [4, 8, 12, 14]

B

E +VxE=0, (1)
one of Maxwell’'s equations. The magnetic field must also sa¥isf{8 = 0. This constraint
expresses the absence of magnetic monopoles, which have never been observed expel
tally. Since (1) implies); (V - B) = 0 this constraint is often treated as an initial condition,
which will be preserved under subsequent evolution.

The induction equation (1) is combined with the equations of gas dynamics to describe
behaviour of compressible electrically conducting fluids subject to magnetic fields. For ne
relativistic fluids, where Maxwell’s displacement current may be neglected, the combir
system is referred to as the magnetohydrodynamic (MHD) equations. The compress
ideal (inviscid and perfectly conducting) MHD equations may be written as a hyperbo
system of conservation laws in the form [7, 9, 11]

P oV
9 w+ (p+ iB?)I—BB
Dl g | e (P2 -0, (2)
at | B vB — Bv
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using a standard notation in whiels the fluid velocityp the density, ang the pressure. The
electric fieldE has been eliminated using the perfectly conducting conditierv x B = 0
appropriate for highly conductive media such as astrophysical plasmas. The $yeriaties
the 3x 3 identity tensor with componenss . A factor of 1/, /1o has been absorbed into
the definition ofB. The total energy density is given by

U =y—fl+%pu2+%82, ()
for a perfect gas with ratio of specific heatsThe three terms comprise the internal, kinetic,
and magnetic energy, respectively.

In recent years Godunov-type upwind methods have become popular for solving hy;
bolic systems such as (2), especially when shocks are likely to form [3, 7, 10]. These fil
volume methods often compute upwind fluxes by solving the one-dimensional system
initial data comprising uniform left and right states separated by a single discontinuity ¢
computational cell boundary, i.e., by solving the one-dimensional Riemann problem [3,

2. THE MHD RIEMANN PROBLEM

Unfortunately the one-dimensional MHD equations are degenerate. If the variables in
are functions of one coordinatenly, the evolution equation fds, becomes simply; B, =
0. In a sense, this is consistent with the one-dimensional form of the consiraBit= 0,
which simplifies td,, B, = 0. Thus the magnetic fieldl, normal to the discontinuity should
be constant in the initial conditions and will then remain constant.

In a finite volume discretisatiorV - B = 0 implies that the signed sum of the jumps in
the normal component & across a cell's boundary should vanish. Thus the initial data fc
the one-dimensional Riemann problems, if used to compute fluxes in a multidimensic
scheme, will generally contain jumps B, comparable to the jumps in the tangential
components x B.

One approach is to use the solution of the reduced seven-wave Riemann problem |
using some average value B on both sides, to update the seven variables other the
B,, followed by a separate step which updaBsso as to preserv® - B =0 [2, 16].
An alternative approach, pioneered by Powatllal. [9, 10] (see also [11]), adds terms
proportional tov - B to the system (2) to make the one-dimensional Riemann problem nc
degenerate. It is worth emphasising that although Powell’s approach maiftaiBise 0
to truncation error in a multidimensional sense, in the one-dimensional Riemann proble
V . B is comparable t&/ x B. Numerical experiments comparing various schemes ha
been performed recently byoiH [15].

3. POWELL'S EIGHT-WAVE MODIFICATION

Powellet al.[9, 10] (see also [11]) proposed solving the modified system
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1R2
wW 5B<)l — BB
dgev) g | et (P B - ve| Bl @
ot | B vB — Bv v
U v-B

(U+p+3B%)v—(v-B)B



394 PAUL DELLAR

in which source terms proportional¥- B have been added to the momentum and inductiol
and energy equations. This system was constructed by modifying the coefficient matrixin
linearised Riemann problem to include an eighth wave corresponding to passive advec
of jumps in B, with the fluid speedy,. This is the only possibility that leaves the system
invariant under the Galilean transformations> x + vgt andv — v + vg, while B andt
remain unchanged.

Janhunen [5] found that the solution of the Riemann problem for Powell’'s system (4)
left and right states with positive fluid pressures may contain an unphysical intermedi
state with negative fluid pressure. This so-called lack of positivity [3] is a particular proble
for astrophysical applications, where the contribution to the total energy from the fi.
pressure is often small compared with the magnetic and possibly the kinetic energy. T
computing the fluid pressumefrom the conserved quantities pv, B, andU often involves
the difference between two nearly equal terms. Janhunen [5] found that positivity, as v
as local energy and momentum conservation, could be regained by discarding the so
terms in the energy and momentum equations, so that (4) becomes

oV

0 0
3 w 1B?)| - BB
LV I +(p+3B?) __v.gl|9 (5)
ot | B VB — Bv v

) 0

(U+p+3B?)v—(v-B)B

4. DERIVATION FROM RELATIVISTIC ENERGY-MOMENTUM CONSERVATION

We now give a systematic derivation of the system (5). In special relativity, energy a
momentum conservation are expressed compactly as a single conservation law for a 1
dimensional stress-energy tensor [6, 8, 12]

os (TS + 1) = O, (6)

whereTF“f andTé‘,(f,’I are the separate fluid and electromagnetic contributions to the stres
energy tensor. Our notation follows Misrefral. [8] except we retain explicit factors af
the speed of light. Greek indices range over 0, 1, 2, 3, with 0 being the time-like compone
and Latin indices range over the space-like components 1, 2, 3. A coordinate vector is 1
X* = (ct, xX), while the metric i< =diag(-1, 1, 1, 1).

The four-dimensional stress—energy tensor for a relativistic ideal fluid is [6, 8, 12]

TP = (p+eu*u’? + pg?, @)

where p is the pressure anglthe relativistic energy density. In the non-relativistic limit,
V] < ¢, the various components Eiﬁf become [6]

1 i i v 1 i
T,?Loz,ocz+e+§pv2, T,?[:TF'Ez,ocv+C(p~l—e~l—2pv2), Tel = psij + pvivj,
8

where the non-relativistic internal energyis= V—El for a perfect gas. Unlike Misnet al.
[8], we usep for the rest mass density, rather than the combined mass—energy densit)
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agreement with standard fluid dynamical usage. The electromagnetic stress—energy t
has components [4, 8, 12]

1 1 . . 1 -
T£&=§<BZ+§E2>, T,g'MzTE'gA:E(ExB)i, Ta = Mjj. (9)

We recognisd ) as the electromagnetic energy density, afdg = T, as the Poynting
flux. The remaining componentg), comprise the three-dimensional Maxwell strégs

ii 1 1 1
Tew = Mij =§<BZ+§E2)8” —(BiBj+§EiEj). (10)
The components of (9) are unchanged by “duality rotations” [4, 5, 8] of the electromagne
field, under whiche andB transform to

. 1_
E' = Ecosa + cBsina, B’ =Bcosx — EEsma, (11)

where« is a real parameter, not to be confused with a component index. Rindler [
notes that it is possible to construct a relativistic field theory in which the electric al
magnetic fields have completely interchangeable statig, 6= p.andV - B = pp, # 0,
and which contains conventional electromagnetidm B = 0) as a special case. This
theory, while permitting both electric and magnetic charges, requires no changes to
stress—energy tensor in (9), which is already symmetric bet&esmnB.

The « = 0 component of (6) corresponds to energy conservation,caadl, 2, 3 to
the three components of momentum conservation. The four-dimensional derivative
dp = 9/oxP = (%at, V). From the « =0 component of (6) we obtain the energy
equation

19 v/l , 1
- V. - = —-ExB)=0. 12
cat(pc +U)+ (pcv+c(2pv +p+6)+c X ) 0 (12)
The leading order terms, which reflect the contribution of the rest mass to the relativi
energy, exactly cancel by virtue of the continuity equatgn+ V - (ov) = 0, leaving the
non-relativistic energy equation [6]. The Poynting flux simplifies ugingv x B = 0 to

1 1 1,
CExB="(-vxB)xB=_(vB’~v.BB), (13)

asin (5). From ther = 1, 2, 3 components of (6) we obtain the momentum equation

}7 <pCvi + % <p+e + ;pvz) + %(E X B)i> + aaxj(pﬁij + pvivj + Mjj)) =0.
(14)

The fluid energy flux and the electromagnetic Poynting flux contribute to the moment
density in (14), as well as to the energy flux in (12). This is due to the symmetry of the stre
energy tensors, or that relativity associates momentum with the motion of energy as \
as matter [4, 8, 12]. However, these terms in (14)@te?/c?) smaller than the expected
terms, those which give the non-relativistic momentum equation as it appears in (2) and
The electric field’s contributions to the energy and Maxwell stress may also be neglec
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since they ar€(v?/c?) smaller than the magnetic contributions in the non-relativistic limit
For instance, the three-dimensional Maxwell stress simplifies to just

1
Mij = 5825”- - BiBj, (15)

and (12) and (14) take the forms in which they appear in (2) and (5). This derivation requi
no assumptions about the presence or absence of magnetic monopoles.

More generally, the electromagnetic part of (14) already contains the terms that Janht
added to the usual Lorentz force to make it invariant under duality rotations (11), by whi
he obtained the “generalised Lorentz force” [5],

9 /1 1 1
f:—V-M—at<CzExB):CZ(V-E)E—CZmeE+JexB+(V~B)B, (16)

in combination with the two “generalised Maxwell equations” [4, 5, 14]

oB 190E
—Jm=VxE+¥, Je=VxB—?¥. a7)
The Lorentz forcd felt by a fluid is not simply—V - M because the electromagnetic field
itself contains momentum, the Poynting flux. Some of the stress exerted by the elec
magnetic field goes into changing the momentum of the field itself, as expressed by
E)t(c%E x B) term in (16), instead of changing the momentum of the fluid. This differenc
becomes negligible in the non-relativistic limit.

The (V - B)B term in (16) is usually discarded, on the assumption #aB = 0 in
reality, leading to the usual expressifnx B for the Lorentz force exerted by a magnetic
field on an electrically conducting fluid. However, the consistent expression for the Lore
force in the presence of magnetic monopoles renfassn (16), which no longer coincides
with J¢ x B. This is why Powell’s system (4) fails to conserve momentum and energy.

5. MODIFIED INDUCTION EQUATION

In relativistic electromagnetic theory, the two homogeneous Maxwell equa¥ior3,=
0 andd;B + V x E = 0, are components of the single equation [8, 12]

3,G* =0, (18)
where the four-dimensional tensGf® has components

0 —cBx —cBy —cB
cB, O E. —-Ey

G = , (19)
cB, —E, 0 E

in terms of the three-dimensional electric and magnetic fields in a given frame.
In the presence of magnetic monopoles (18) generalises to

oy Gaﬂ = Iorfip (20)
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where pf, must be a four-vector in order to make the equation invariant under Lorer
transformations, i.e., transformations of the fofat, x) — (ct’, x), wherex' = I'(Xx +
vot) andt’ = I'(t + x - vo/c?), and similarly for other four-dimensional objects. Note that
I'=(1-2v3/c)Y2=1+00E/c?), andt’ =t + O(vox/c?), so Lorentz transforma-
tions reduce to Galilean transformations in the non-relativistic limit. By analogy with tf
relativistic equation for baryon conservation (i.e., continuity of mass) [6], the simple
choice ispf, = (pm/C)UP, whereu? = TI'(c, v) is the single fluid four-velocity. The scalar
pm is the density of monopoles in the local fluid rest frame, where-= (c, 0). In a general
frame, Lorentz-invariance forces, to be nonzero. The components of (20) then become

B
V-B=Tpn, E—i—VxE:—Fpmv, (21)
the latter of which reduces to the Galilean-invariant, modified induction equation of (4) a
(5) in the perfectly conducting and non-relativistic 1) limits.

6. CONCLUSION

Relativistic energy—momentum conservation, Egs. (6), (7), and (9), is already invari
under duality rotations and requires no changes to accommodate the possibility of magt
monopoles ¥ - B # 0). In the non-relativistic limit we derive equations which coincide
with those previously proposed by Janhunen [5] and differ from those proposed by Po\
[9, 10] in that they retain local conservation of energy and momentum in the presel
of monopoles. Our derivation also leads directly to a conservative form of the equatic
whereas Janhunen'’s [5] proceeded via primitive variables.

The possibility of magnetic monopol€g,- B = pm, # 0, requires a source term propor-
tional to V - B in the induction equation to preserve Lorentz invariance of the combine
system. If magnetic monopoles are treated as particles, the simplest approach, Loren
variance leads to the modified induction equation first proposed by Powell [9] and adog
unchanged by Janhunen [5].

The Lorentz force consistent with momentum conservatlp, B + BV - B, is not per-
pendicular toB unlessV - B = 0. This leads to the phenomenon observed by Brackbi
and Barnes [1] in which a supposed steady state is “polluted” by magnetic monopoles
celerating along magnetic field lines. In facoth [15] recently showed that the Lorentz
force computed by a momentum conserving scheme cannot be perpendid®javem if
V - B = 0 in some discrete senseofhi’also found that Powell’'s formulation computed in-
correct propagation speeds for strong shocks which were inclined to the computational ¢
This is typical of non-conservative formulations [7, 15], and it remains to be seen whet
errors in the shock speed are alleviated by restoring just momentum and energy cons
tion. A modification of these equations, retaining the exact fluid stress from (7) insteac
the approximation in (8), may also prove useful for relativistic magnetohydrodynamics.
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